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Most previoms research oa search for game playisg ks
foossed on improviag search efficiency =zather thas os better
stilizsiag availadle iaformation. By developing models bdssed o3
sotion we call "playing strength™, we acguire the insight sneeded
to develop strategies wlhich perform better thas miaimax agaisst
doth perfect and imperfect opponents. Is particular sitsations,
our decision strategies Yyield improvements ocomparable to or
exceediag those provided by as additionsl ply of oo.tch.}

PR S

1. Misi-max for game playiag

Ia many competitive situations, decisios makiag can de sided
by the wuse of game models Aay two-player, sezo-sum game can be
represented as s miaimax game tree, vhere the root of the tree
denotes the initial game situation and the childres of any nmode
reopreseat the results of the possible moves whick cam be made
from that node. In this paper we consider ways of improviag the
pezformance of the standard sinimax backup algorithm. Ve follow
conveation and call the two players “Max” and "MNia" aad use "+°
to denote nodes vhere MNax moves amd *"~" to represeat similar
nodes for MNia. Positive ondgame (leaf) valses demote positive
payoffs for Max. Readers vusfamiliar vwith the coaveational
miaimax backup sesrch and decision procedure shosld refer to
Nilsson [80]).

2, Prodblems with minimax

Given perfect play by oOunr oppoment, ve kaow from game theory
that a ocoaveantional miaimax strategy which searches the entire
game trees yields the highest possible payoff. Bowever, most
actsal players, vwhether humaa or saschize, lack ths conditioans
aeeded to insure optimel play. Ia particslaz, becanse the trees
of meay jgames are very deep, and tree size grows expoasatially
with depth, a complete search of wmost real game trees is
computationslly iatractadle. Ia these imstasces, static
ovalsation fuactions and other heuristic techaigues are employed
to zeduce the search seed in makiag decisiosns.

Host previocss csesearck o3 seareh for game playiag bhas
foensed oz improviag search oefficiemcy. Results of this type
improve the guality of player decisioa makiag by providiag more
zelevast iaformation. Ia eontrast, our reseasch focases on -
botter untilising iaformation rather thaa sesrchiag for more. Ve
sumsnarise previoss work oz this issue, thea descride our spproach
asd provide initial results.

3.1 Previocuns wosk o sompensatinag for iancemplete search

Duzisg the middle to late 1960°s, Jamee Slagle azéd 12is
ssseeiates sosght to improve the perfermance of aiaisaz Sacskup by
4 attonpting to predict the expected value of (Pel)-loevel aiaimax
> seszel with oaly s D-level seareh (Slagle and Dizea [70)). Their
strateogy vas eslled the "M and N precedusre™ and deterained the
valse eof & MNaz 30d¢ by considering its M best ehildrez and the
valne of s Nia neds froms its N best ehildren. The stady eited
sbove zestrieted the prodlema to sesred dopth D=2 aad sleo




zostzicted N and N to de 2. The algorithm they devised, which we
sasmarise below, was tested om sctual trees arising im the game
of Kalsh.

The M and N procedure is Dbased oa ths aotios that the
expocted Sacked-up vealue of s 20de is likely to differ fzxom the
oxpocted bdacked-up value of its best child. To davestigste the
exsct aature of this difference, iavestigators generated sample
KEalsh positions sad raz 1-ply aad 2-ply searches o3 thes. Fzom
this empirical data they plotted the differemce doetwvees the
static and 2-ply backed-up values of each positios sgaiast the
diffezence Ddetveen the static values of the twvo best children.
Fzom this data they defined a "boass fuaction” to be added to the
static valme of best-lookiang child, hoping that this wosld lead
to & better estimate of the true valsme of the parest. As shown
ia thoeiz papes, this boauvs fusctios tursed o3t to be
spproximately lisear. Their results were (1) that the “improved”
aslgozithm voa abost 51.1 percesnt of the games, and (2) that N gnd
N yields an improvemeat ia the expected value of the ountcome of
the game abosut 13 percent as great as does am additionssl ply of
sosrch. They conclude that "N and N as applied to Kalad provides
as sdvantage that is sbdout as lazge as a2 typical value feature
[of the static evaluvation fumction] bdst aot as large as an
sasssally poverfsul ome”.

The resder will note ia the following section a resemdlance
between the aotion of s boass fuactiom amd our attempt to more
scourately predict the expected value of moves made by s fallidle
epponeat. I» Ballazréd anéd Reibmaa (83] we prove that ia the
simplest form of the fizst of twvo models we preseat below, with a
fized probability of opponent erzror, iadependent of the
difference botveen candidate nodes, our resslts caa be obtained
by a3 oappropriste form of N and N strategy (and vice verss),
slthough the ozact backed-up valses being deternined will differ.
This is due to the linear asture of the deass fuaction determined
as outlined adove. Ve have slso showa that the arc-sum tree
model we Dlave adopted wonld lesd net to a linear bonus fusction
bdbut zather to oae descrided by s 4~th degree polynomial.

2.2 The uaresolved probliem of opponent fallibility -

Ia addition to bhaviag sn iaability to eompletely search
sstea]l game trees, asetual]l implenmeatstioss of miaimax ssseme
peozfeet play by theis epponeat. Hewever, this asssaptioa often
is overly ecoensezvative and ean bo detrimental to good play. An
ismediste snd ozxtreme oxanmple is fouad is forced loss situstions.
Is the twe-valued game ia Figurze 1, Naz is faced vwith a forced
1ess. Regardless of the move Max makes at the "+" aede, 4f MNia
plays cozseotly Naz vwill alvays lese. PFelleviag the cemveatioasl
nisinss strategy, Nax vosld play raadonly, pickiang either ssbtree ;
with egsal freguessy. Sspprese, hevever, that thers is a moazero
prodabdility thet Nis will play iancoszrectly. For the momeat,
asssne Nia makes an incerreet move 10% of the time. Thea if Na:x ;
seves zasndenly, the expocted ontoome of the geme is .5(0) <+ 1




+5(.9%0 ¢+ ,101) = ,05. If Max kaows that, om occasion, MNia will
move imcorrectly, this kaowledge caa be used to dimprove the
expected payoff from the game. 8pecifically, Maxz cas regazd esch
®-" g0de 85 &8 "chance 320de" similar to those that =represesat
chance eoveats sach as dice zolls in son-minimsx games. (Ballard
[82,83) gives algozithms suited to this bDroader class of “o-
sisinaxz” games.) Thus Maxz evaluates "-" by computiag & weighted
svezsge of its chilédrens dased on their comjectured prodadilities
of beimg ohosen by Mia rather thaa by findiag just the mininmus.
Followiag this strategy, Max coaverts the pure minimax tree of
Figuze 1 to the ®-minimax tree shown ian Figure 2, deteraines the
velues of the childrea of the zoot as 0 and 0.1, and selects the
cighteost brasch of the game tree bdecsuse it aov hes the higher
backed-up value. Ia terms of expected payoff, (which is computed
as 0°(0) + 1.0%(.9%0 + .1°1) = 0.1), this is cleazrly an
improvemeat over staadard misimax play. Furthermore, this
strategy is an improvement over minimax is forxced loss situations
zegardless of the particonlar probadbility that Minm will err. Ossr
observed improvemeat in forced loss situations 1is g specific
sxzamnple of "tie-bdreaking”, vwhere the oequal graadohild valses
happea to be szero. Because minimax only wuses iaformation
provided by the extreme-valuved children of a mode, positions with
different expected results often appear equivaleat to mizimaz.
Vazriast wminimax strategies caa thus improve performaace by
breaking ties with information mimimax obdtains but does aot use.

A less obviows opportuaity for improviag minimex’s
performance is fousd iz Figsre 3. Assume as sbove that Mia msakes
the correct move with probadbility .9. If Max sses the
coaventional backup strategy asd ohooses the left mode, the
expected ountcome of the game is 2.1. If, however, we recogmize
onr opponeat’s fallidility and coavert the Nia nodes to "®',”,
(as in Figure 4), wve will choose the right branckh and the games
expected =zesult imocresses to 2.9. Thus by altering the way we
backsp valunes to our opponent’s nodes iz the game tree, we can
improve omur expected perfozmance agaiast an imperfect opponmesnt.

Ia the oxample o0f & forxced 1loss, the improvemenat ia
perfornasnce vwas due to the sbility of a weighted average backsp
scheme to correctly choose boetveon moves which appesr egual to -
coaveational misimax. Ian the second example, our variaat backup
vielded s "zadicel difference” from mirimaxz, s ochoice of wmove
wkiockh differed a0t becasse of “tie-breakiag”, bLut becasse
differing bYackup strategies produced distinct choices of vwhich ﬁ

available move is correct.
3. Adveszsazy models for isvestigatioa

Haviag observed a3 opportuaity to profit By exploitiag
; oerrogss which might be made by our opponeat, we aov formulate a
{ model of a2 fallible sdversary’s dodhavior. Our model is Vbased o=
; the eoncept we ocall “"playiag stresgth”. Iatuitively, playiag
stzoagth is es iadication of hov well a player caz bo expected to
pozforan 1ia aetua]l competition rather thaa agaiast a theoretical




perfect player. Iz order to be s wuseful metric, s playing
stzeagth parameter shonld have at least the followiag properties:

J. Gives two playexs N and N, wvhere the playing stresgth
of M groestly exceeds that of N, M should play better than
N sgaiast asy fixzxed thizrd player Q, where better play 1is
dofined s wianing & Dhigher proportion of the games
played or haviag s better expected payoff.

II. Assume N and N are as adove and ocomsider a wnode P
where N and N have tvo poassible moves available., If the
children of P aze denoted = sad s, and the oexpected
payoff fzom makiang move r is greater then the expected
payoff from making move s for both M asd N, then M should
6hoose mOVe £ Oover move s with & probability greater than
or egual to the probadility that N choosss £ over s.

3.1 A simple playizng streagth based model

Naviag given geseral axioms for osr iatuitive aotjon of
playing streagth, we aow descride & particular model for an
imperfect player’s behavior we have choses to study. Actusally,
we bave alzesady preseonted & simple oxample of playing stremgth in
a model for playing dimary-tree games. Let the playiag strength
be the probadility that s player chooses the move which, in the
present game position agaiast the curreat oppomseat, yields the
best expected endgame result. 3Sisoce the theorstically correct
move csa be difficult to determine, ve approximate it ia our
model sy wsisg s cosveatiosal =misisax search. Using this
spproximatioa, we model an imperfect Nia player of streagth 8 by
choosing the move vwith the best aisimax evalsatios with
probadbility 8 and the other availadle move with probadility 1-8.
Ve caa generalize this model for trees with branchiang factor B in
sevezal ways: (1) by coasidering eo2ly the twvo best availabdle
moves; (2) by choosing the first move vwith probadility 8, the
secoad with probadility 8°(1-8), the third with prodadility 8 ¢
(1-8)%92, gaad the ath with probadility 8 ¢ (1-8)°¢(B-1); (3) by
usiag other variant decision strategies mot discussed here. Ia
the soec0nd case, it should be moted that these probadbilities are
an approzimation. Their ssm espproackes 1 oaly as B goes to
iafinity, othervise ths asum 4iffeors from 1 by (1-8)*°B,

$.2 A more sophisticated model of imperfect play

' P The model presented is simple to implement and, as showa ia
f Bellazd and Reidman ([83]), resslts ia better play than does
‘ : misinex in some Sroed classes of gese ssituatioss. However, it
fails to ocoasider the relative differences betwveen moves. For
oxample, if node valnes renge from 0 to 10, say reasonmadble player
f shosld oehoose 2 n0de valuned 2 over a node valued 10 more often
! thea a node valined 2 wosld be ehosen over oze valued 3. To
sossect this vwe present s second model of impecfect play.

Ias general, it should be fairly essy to differeatiate




Detveesa moves whose valses differ greatly. HNovever, if two moves
have approximately the same value, it conld be s more difficuilt
task to ec¢hoose bDetwesns them., The streagth of a player is, in
part, his ability to choose the correct move from s 1zanmge of
slteraatives. Playing streagth can therefore correspond to a
“range of discerameat”, the ability of a player to determine the
rolative gquality of moves. Az imasbility to distiaguish bdetween
soves with <resdically differeat oexpected outcomes could bhave
dzastic consequences. Similar difficulties with moves of slmost
egual expected payoff skould, o the sverage, have wmuch less
effect o 2 player’'s overall performancs.

Ve model players of varions stremgths by adding noise to the
information they 1use for decision making. A player with
noiseless move evaluation is 2 "perfect opponent”™, while a player
with am iafinite amount of noise imjected iato its evalmation
plays randomly. Ve introduce noise at the top of an imperfect
player’s search tree in an amoust inversely proportionsl to the
player's strength. Although it msy appesr to be easier, and
perhaps more reasconable, to introduce mnoise at the leaves or in
the static evaluation fusction, we avoid this alteraative for a
asaber o0f <rsessons. First, we feel iatrodsciag noise at the top
better models the notion of opponeat fallibility while smoise in
the leaves zeflects the problems of incomplete search.
Furthormore, the actual effect of addiag moise to the tops of
search trees csn bDe studied azmalytically whijie the effects of
istroduciag noise ia the leaves are not yot maderstood [Nau 80].
We mow descridbe the doetails of the imperfect player model used in
the zomainder of this paper. Each imperfect player is assigned a
playiag streagth between 0 (perfect) and minus ianfiaity (raamdom).
Ia our simulatios, the imperfect MNin player conducts '}
conventional minimax backup search to approximate the actual
value of each ¢e¢hild of the ocurrent position. The backed-aup
valmes of oeach ockhild are thes normalized with respect to the
zange of possible dacked-up values and a random asmber, 0 (= x (=
-8, (whkere 8 i3 the playing streagth, a real asmber <(~ 0), is
8dded to the normalized valse of eack ckild. The true value with
20ise added is then treated as a coaveational backed-mp value.

4. An empirical analysis of the effect of impeczfect play -

Is ozder to iavestigate the correlatioa Dbetwees playiag
stzongth as defined ia o3z wmodel sad performaace ia actual
competition, ve bhave conducted trials pittiag aisimaz agaiast
imperfoect oppoments with varyiag playiag streagths. Ve coaduct
our triale with ocomplete, a-azy gane trees goenerated ss fusmctions
of thzee parzsmeters: D denotes the depth of the tres ia ply, Br
the bramching factor, and V, the maximem allovable “arc value”.
Ia previons studies of search for game playiag, leaves lhave deen
assigned isdependeat rendom ammbdoers as valses (e. g. Knsth aad
Noore [),Pearl [83)), or their valmes bhave beoen obtained by
growiag the tree in s top~dowa fashios (Fsllez, ot a1 []). 1a
osr empirical study, ve employ the latter method. BRvery arc ia
the tree is sssigned a rendom iateger chosez from a nuaifors




distribution betweesn O amd V. The value of each leaf §is then the
sum of the arcs lesding to it fzom the root. This method imsures
& faizly strzoag dependence betweeom the valses of bdrother and
sisters in the game tree. (Ve ars ia the process of formulatiag
a8 method of characterizing the sctual degree of dependence ina
game treos.) Ve feel that a game vwith some dependence more
accurately models resl world applicationss of game playing and
zeduces the chance of anomslous behavior (Pearl [82]). In
additioan to producing trees with & fairly high degree of
depeandence, the method of top-down tree growth has two other
sdvastages. First, if the tree is fairly deep in relatios to the
players’ search depths, we need to grow only those paths which
immediately surround the 1line of play, & great savings in
simulation time. Second, the arc-sum method of leaf valne
oslculation provides a natural static evaluation fusctionm for a
node, the sum of the arcs leading from the node to the root.

Ve bhave conducted s numdber of experimonts to measure the
gains made by minimax agsinst imperfect opponents of varying
stroengths, Ve proesent the results of three such experiments,
each consisting of 1000 game trees with D=5, V=10, and Bz=2, 4,
or 10. Both Max snd Min wused 2-ply searches and the partial
sarc-sum static oevaluation to determinme their moves. Thus, each
game lasted five moves, sasmd the MNin player bRhad the first
opportunity to see the actual leaves of the game tree. Thoe trees
vere orsated by generating rzesadom arc values with the UNIX
psendo-zandon aumadber gezerator oa a PDP-11/70. For esach
collection of 1000 trees, MNax played sach game against seversl
oppoments vwith differing playiang streagths. The zesults are
summarized in Figure §. As expected, Max’s payoff imcreassed
monotonically as the imperfect player model’s stremgth decreased.

5. A strategy for use agaiast as imperfect oppoment

Ve aow present a strategy based o3 the S®-minimax search
slgorithms for trees comtaiaiag chasce 30des in order to improve
performance by compensatiag for the prodadilistic bebavior of
fallidle opponeat. Our strategy predicts MNia play by using the
folloviag assumptioas to evaluste "-" nodes:

I. Agaiast a Nin player assumed to be perfect, we shouid
use & coaventional Max strategy.

I1. Agaiast as opposent who is assumed to play raadomly,
we should oevaluate *=~" gpodes by takiag an unweighted
average of the valses of their children. valmes of their
ehildren.

I1I. Is geneszal, against imperfect players, we shonld
ovalsate "-" s0des Vy takiag s welighted average of the
valnes of thoeir oehildrean, deriviag the sppropriate
probabilities for eomputiag this average by usiag, in
part, as estimate of osr opponeants playiag streamgth.




To predict the moves of ouvr imperfect opposent, wve coasider
the ©®-ainimaz based modsl of imperfect player behavior presented
ia sectionm 3-1. More specifically, we assign our oppoment
predicted streagth, desoted PS, detweezn 0 and 1. To detersmine
the valus of "-" modes dizxectly below the root, omzr predictive
stzategy searches aad bdacks up valuas to the nodes directly below
each "-" gode using coavextional ainimax. Each *~" sode is then
evalunated by first sortiag the values of itse ohildren is
isczeasing order, thes taking [} weighted average using
probabilities PS, (1-PS)*PS,...,(1-PS)**(Bz-1) * PS., If PS§=1, we
Rave predicted that ounr oppoment is perfect, so we consider oaly
the wminimum-veluned child in evaluating a "-" node. At the other
extreme, if s raandom oppoment is predicted, 4. eo. PS is
approzimately O, the probabilities used to compute the weighted
average are all equal and the Niz node is evaluated by aversging
the values of its children.

How well our sssumptioas predict the moves of imperfect
oppoaents shosuld be reflected in our strategy’'s actual
posformance against such players. Note that the playiag strength
metric as wused in the simulated MNin player may smot directly
correspond to the playing streagth metric used by onr Max player
to predict Nin’'s behavior. We are currestly iavestigatimg how to
choose the predicted strength which yields the maximum payoff for
our strategy  givem an oppoment model and an actual playing
strength.

6. An empirical ssalysis of predictive play

Against imperfect players of selected streagth we conduct anm
enpiricel study to ocompare the performamce of ouwr predictive
slgoritha with that of coavesntiomal miaimax dackup. As 1in the
empirical amalysis ia sectios 4, we use a sample vf 1000 ramdomly
gonorated game treos with Br=4, D=5, and V=10. Ve use three MNin
opponents: true Niz with mo moise added, an imperfect Min playser
with aoise values obtained from a uniform distridbetion between O
aad .5, eand aa spproxzimation of a random player with soise values
c¢hosea from the zange 0 to 6. Agaiast these Miaz players, we test
1-, 2=, and 3-ply searchiag coaveationsl Max and 10 predictive
playess, oach with a 2-ply seasrch and azd s PS8 chosen (f:xom
botveon 0 sa3d .9. The roesults of this experimeat are fosad ia
Figurze 6. Boefore summariziag ouwr observatioas, we aote that the
aumboezrs gives is Figure 6§ represeat poiats o3 & contiavem; they
iadicate goeneral treads bdut do mot cosmvey the estire spectrem of
valses which 1ie betveen the poiats we have imcluded.

Ia the firast column of Figure 6, we observe that, though it
might bSe eoxpected that pure HNax Dbdackup wosld bde the optimsa
stzategy sgaiast ceavestionsl MNia, eeversl of ounr predictive
players pecfozm Detter than s coaveantional Nax player searchiag
the same asmber of ply. Our observed improvemeat is as much as
7% eof the gain we would expect from adding as sdéditionsl ply of
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searok to the <comventiomal DMNax strategy. This <zesult is
asajogous to that obtained vwith Slagle and Dizon’s N and N
strategy. Like X and N, osr improvemeant is due, at least in
part, to a strategy which, by comsidering informastios from more
thaa just the extreme-valued childres of & =aode, particlly
compensates for a search which fails to reach the leaves.

Ia the secosnd column of Figure 6, we see¢e that against an
opponeat whose Dplay is sometimes imperfect, osr strategy cad
provide almost half the expected improvement givea by adding an
additional ply of search to & comventiomal MNax strategy. Ve
believe this gain is due primarily to the adbility of our strategy
to capitalize on our oppoments potential for errors.

If we examine the results in column 3 of PFigure 6, we
observe that, against & rsndom player, onr strategy yields an
improvement between 2 and 3 times that provided by a2z additional
ply of seazch. As the predicted strength of osr oppoment goes
down, our predictioas of our opponeant’'s moves become more a
simple average of the alternatives availlable to bhim than »
minimaxz bdackup. VWe have previously comjectured that the most
aconrate prediction of the <zesults of randos play is such ap
sversge and, as expected, our strategy'’'s performance coatinues to
improve as the strength predicted decreases.

Our fisal comment is to observe a possibdle drawback to the
iadiscriminaste use of osr strategy. Vhen we begizm to
overestimate our opponents fallibility, osr performance degrades.
Ia both ¢columas 1 amd 2, omr performamce pesks, thez if we
inacocurately overestimate the weaskness of onxr oppoaent, our
performance deoclines and, ia ocolumn ome, actsually falls delow
that of coaventioasl MNazx.

7. Conclusion

Ia this paper we have iatroduced the prodlem of adapting
gane playisg strategies to deal with imperfect opponeats. Ve
fizrst observed that, agsinst a fa311ible sdversary, the
conventional miaimax backup strategy does aot always choose the
move which yields the best expected payoff. To iavestigate ways
of improviag =misimax, vwe formunlated a generxal =model of an
imperfect adversary usiag the coacept of "playiag streagth”, Ve
thea proposed several alternastive game playiag strategies which
eapitaliszse oa their opposeats potential for error. Aa eampirical
study wves cosducted to eompare the performance of these
strategies with that of miaimax. Even against pesfect opponeats,
oy strategy showed a marginal improvemeat over siaimax snd, in
some other sases, groat iancreanses ia performance were odsoerved.

Ve have preseated the preliminary szesulits of eur eofforts to
dovelop varisat smiaimax strategies that improve the performanece
of game players ia actual competition. Our preseat aszd fauture
rosonrs) isclsdes 3 sostinned effort to expasnd and geaeralize eosnr
nodels of impoerfoect play, onr predictive strategy. sad the sotien




of playing stresgth, Fuzrther study of our models has included
aot oaly asdditional empirical experimesnts but also oclosed-form
snalysis of soms closely rxeletnd game tree seazrch prodblems. Ve
hope to eventually scquizre a wanified =wmaderstasndiag of several
distinct problems vith minimex iz order to develop a more general
gsame playiag procedure which retaias the stroag poiats of minima:z
while corzeoting its perceived insdeguacies,

.
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Lvaluation !} 2 4 19
0.7 ! 23.5% 235.3 20,2
0.1 { 7.5 2z. 33.°
0.2 ! 23.5 29.9 32.3
c.2 ! 2¢.2 31.9 23.5
2.4 ! 22.4 31.5 2.2
2.5 ! 30.2 32.9 35.2
5.0 ! 31.3 34.5 37.5

Figure 5: ini-naxz wvs. the Iuperfect
Player TYodel, This table gives the aver-
age payoff for miniuax in depth 5 ganes
against dimperfect opponents of various
streangtis. Zaclk player conducted ¢ 2-~ply
searck. The arc-values ranged froz 0-10.
The average is based on 1090 trial gawnc
trees.
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= 1 22,25 325,07 34,02
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Tigure §: This table compares the rela-
tive perforiance of conventional axd
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